Uniform approximation and Bernstein polynomials with coefficients in the unit interval

نویسندگان

  • Weikang Qian
  • Marc D. Riedel
  • Ivo G. Rosenberg
چکیده

This paper presents two main results. The first result pertains to uniform approximation with Bernstein polynomials. We show that, given a power-form polynomial g, we can obtain a Bernstein polynomial of degree m with coefficients that are as close as desired to the corresponding values of g evaluated at the points 0, 1 m , . . . , 1, provided that m is sufficiently large. The second result pertains to a subset of Bernstein polynomials: those with coefficients that are all in the unit interval. We show that polynomials in this subset map the open interval (0, 1) into the open interval (0, 1) and map the points 0 and 1 into the closed interval [0, 1]. The motivation for this work is our research on probabilistic computation with digital circuits. Our design methodology, called stochastic logic, is based on Bernstein polynomials with coefficients that correspond to probability values; accordingly, the coefficients must be values in the unit interval. The mathematics presented here provide a necessary and sufficient test for deciding whether polynomial operations can be implemented with stochastic logic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials

The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...

متن کامل

A method to obtain the best uniform polynomial approximation for the family of rational function

In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion, we obtain the best uniform polynomial approximation out of P2n to a class of rational functions of the form (ax2+c)-1 on any non symmetric interval [d,e]. Using the obtained approximation, we provide the best uniform polynomial approximation to a class of rational functions of the form (ax2+bx+c)-1 for both cases b2-4a...

متن کامل

Numerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.

The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...

متن کامل

Numerical solution of nonlinear Hammerstein integral equations by using Legendre-Bernstein basis

In this study a numerical method is developed to solve the Hammerstein integral equations. To this end the kernel has been approximated using the leastsquares approximation schemes based on Legender-Bernstein basis. The Legender polynomials are orthogonal and these properties improve the accuracy of the approximations. Also the nonlinear unknown function has been approximated by using the Berns...

متن کامل

Generalized Bernstein Polynomials and Symmetric Functions

We begin by classifying all solutions of two natural recurrences that Bernstein polynomials satisfy. The first scheme gives a natural characterization of Stancu polynomials. In Section 2, we identify the Bernstein polynomials as coefficients in the generating function for the elementary symmetric functions, which gives a new proof of total positivity for Bernstein polynomials, by identifying th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011